1 | /** |
---|
2 | * AssayService Service |
---|
3 | * |
---|
4 | * @author s.h.sikkema@gmail.com |
---|
5 | * @since 20101216 |
---|
6 | * @package dbnp.studycapturing |
---|
7 | * |
---|
8 | * Revision information: |
---|
9 | * $Rev: 1730 $ |
---|
10 | * $Author: s.h.sikkema@gmail.com $ |
---|
11 | * $Date: 2011-04-08 10:07:56 +0000 (vr, 08 apr 2011) $ |
---|
12 | */ |
---|
13 | package dbnp.studycapturing |
---|
14 | |
---|
15 | import org.apache.poi.ss.usermodel.* |
---|
16 | import org.apache.poi.xssf.usermodel.XSSFWorkbook |
---|
17 | import org.apache.poi.hssf.usermodel.HSSFWorkbook |
---|
18 | |
---|
19 | class AssayService { |
---|
20 | |
---|
21 | boolean transactional = false |
---|
22 | def authenticationService |
---|
23 | def moduleCommunicationService |
---|
24 | |
---|
25 | /** |
---|
26 | * Collects the assay field names per category in a map as well as the |
---|
27 | * module's measurements. |
---|
28 | * |
---|
29 | * @param assay the assay for which to collect the fields |
---|
30 | * @return a map of categories as keys and field names or measurements as |
---|
31 | * values |
---|
32 | */ |
---|
33 | def collectAssayTemplateFields(assay) throws Exception { |
---|
34 | |
---|
35 | def getUsedTemplateFields = { templateEntities -> |
---|
36 | |
---|
37 | // gather all unique and non null template fields that haves values |
---|
38 | templateEntities*.giveFields().flatten().unique().findAll{ field -> |
---|
39 | |
---|
40 | field && templateEntities.any { it.fieldExists(field.name) && it.getFieldValue(field.name) } |
---|
41 | |
---|
42 | }.collect{[name: it.name, comment: it.comment]} |
---|
43 | |
---|
44 | } |
---|
45 | |
---|
46 | // check whether module is reachable |
---|
47 | if (!moduleCommunicationService.isModuleReachable(assay.module.url)) { |
---|
48 | |
---|
49 | throw new Exception('Module is not reachable') |
---|
50 | |
---|
51 | } |
---|
52 | |
---|
53 | def samples = assay.samples |
---|
54 | |
---|
55 | [ 'Subject Data' : getUsedTemplateFields( samples*."parentSubject".unique() ), |
---|
56 | 'Sampling Event Data' : getUsedTemplateFields( samples*."parentEvent".unique() ), |
---|
57 | 'Sample Data' : getUsedTemplateFields( samples ), |
---|
58 | 'Event Group' : [[name: 'name', comment: 'Name of Event Group']], |
---|
59 | 'Module Measurement Data': requestModuleMeasurementNames(assay) |
---|
60 | ] |
---|
61 | |
---|
62 | } |
---|
63 | |
---|
64 | /** |
---|
65 | * Gathers all assay related data, including measurements from the module, |
---|
66 | * into 1 hash map containing: Subject Data, Sampling Event Data, Sample |
---|
67 | * Data, and module specific measurement data. |
---|
68 | * Data from each of the 4 hash map entries are themselves hash maps |
---|
69 | * representing a descriptive header (field name) as key and the data as |
---|
70 | * value. |
---|
71 | * |
---|
72 | * @param assay the assay to collect data for |
---|
73 | * @fieldMap map with categories as keys and fields as values |
---|
74 | * @measurementTokens selection of measurementTokens |
---|
75 | * @return The assay data structure as described above. |
---|
76 | */ |
---|
77 | def collectAssayData(assay, fieldMap, measurementTokens) throws Exception { |
---|
78 | |
---|
79 | def collectFieldValuesForTemplateEntities = { templateFieldNames, templateEntities -> |
---|
80 | |
---|
81 | // return a hash map with for each field name all values from the |
---|
82 | // template entity list |
---|
83 | templateFieldNames.inject([:]) { map, fieldName -> |
---|
84 | |
---|
85 | map + [(fieldName): templateEntities.collect { |
---|
86 | |
---|
87 | it?.fieldExists(fieldName) ? it.getFieldValue(fieldName) : '' |
---|
88 | |
---|
89 | }] |
---|
90 | |
---|
91 | } |
---|
92 | |
---|
93 | } |
---|
94 | |
---|
95 | def getFieldValues = { templateEntities, fieldNames, propertyName = '' -> |
---|
96 | |
---|
97 | def returnValue |
---|
98 | |
---|
99 | // if no property name is given, simply collect the fields and |
---|
100 | // values of the template entities themselves |
---|
101 | if (propertyName == '') { |
---|
102 | |
---|
103 | returnValue = collectFieldValuesForTemplateEntities(fieldNames, templateEntities) |
---|
104 | |
---|
105 | } else { |
---|
106 | |
---|
107 | // if a property name is given, we'll have to do a bit more work |
---|
108 | // to ensure efficiency. The reason for this is that for a list |
---|
109 | // of template entities, the properties referred to by |
---|
110 | // propertyName can include duplicates. For example, for 10 |
---|
111 | // samples, there may be less than 10 parent subjects. Maybe |
---|
112 | // there's only 1 parent subject. We don't want to collect field |
---|
113 | // values for this single subject 10 times ... |
---|
114 | def fieldValues |
---|
115 | |
---|
116 | // we'll get the unique list of properties to make sure we're |
---|
117 | // not getting the field values for identical template entity |
---|
118 | // properties more then once. |
---|
119 | def uniqueProperties = templateEntities*."$propertyName".unique() |
---|
120 | |
---|
121 | fieldValues = collectFieldValuesForTemplateEntities(fieldNames, uniqueProperties) |
---|
122 | |
---|
123 | // prepare a lookup hashMap to be able to map an entities' |
---|
124 | // property (e.g. a sample's parent subject) to an index value |
---|
125 | // from the field values list |
---|
126 | int i = 0 |
---|
127 | def propertyToFieldValueIndexMap = uniqueProperties.inject([:]) { map, item -> map + [(item):i++]} |
---|
128 | |
---|
129 | // prepare the return value so that it has an entry for field |
---|
130 | // name. This will be the column name (second header line). |
---|
131 | returnValue = fieldNames.inject([:]) { map, item -> map + [(item):[]] } |
---|
132 | |
---|
133 | // finally, fill map the unique field values to the (possibly |
---|
134 | // not unique) template entity properties. In our example with |
---|
135 | // 1 unique parent subject, this means copying that subject's |
---|
136 | // field values to all 10 samples. |
---|
137 | templateEntities.each{ te -> |
---|
138 | |
---|
139 | fieldNames.each{ |
---|
140 | |
---|
141 | returnValue[it] << fieldValues[it][propertyToFieldValueIndexMap[te[propertyName]]] |
---|
142 | |
---|
143 | } |
---|
144 | |
---|
145 | } |
---|
146 | |
---|
147 | } |
---|
148 | |
---|
149 | returnValue |
---|
150 | |
---|
151 | } |
---|
152 | |
---|
153 | // check whether module is reachable |
---|
154 | if (!moduleCommunicationService.isModuleReachable(assay.module.url)) { |
---|
155 | |
---|
156 | throw new Exception('Module is not reachable') |
---|
157 | |
---|
158 | } |
---|
159 | |
---|
160 | def samples = assay.samples |
---|
161 | |
---|
162 | def eventFieldMap = [:] |
---|
163 | |
---|
164 | // check whether event group data was requested |
---|
165 | if (fieldMap['Event Group']) { |
---|
166 | |
---|
167 | def names = samples*.parentEventGroup*.name.flatten() |
---|
168 | |
---|
169 | // only set name field when there's actual data |
---|
170 | if (!names.every {!it}) eventFieldMap['name'] = names |
---|
171 | |
---|
172 | } |
---|
173 | |
---|
174 | [ 'Subject Data' : getFieldValues(samples, fieldMap['Subject Data']*.name, 'parentSubject'), |
---|
175 | 'Sampling Event Data' : getFieldValues(samples, fieldMap['Sampling Event Data']*.name, 'parentEvent'), |
---|
176 | 'Sample Data' : getFieldValues(samples, fieldMap['Sample Data']*.name), |
---|
177 | 'Event Group' : eventFieldMap, |
---|
178 | 'Module Measurement Data': measurementTokens*.name ? requestModuleMeasurements(assay, measurementTokens) : [:] |
---|
179 | ] |
---|
180 | } |
---|
181 | |
---|
182 | /** |
---|
183 | * Retrieves measurement names from the module through a rest call |
---|
184 | * |
---|
185 | * @param consumer the url of the module |
---|
186 | * @param path path of the rest call to the module |
---|
187 | * @return |
---|
188 | */ |
---|
189 | def requestModuleMeasurementNames(assay) { |
---|
190 | |
---|
191 | def moduleUrl = assay.module.url |
---|
192 | |
---|
193 | def path = moduleUrl + "/rest/getMeasurements/query?assayToken=$assay.assayUUID" |
---|
194 | |
---|
195 | def jsonArray = moduleCommunicationService.callModuleRestMethodJSON(moduleUrl, path) |
---|
196 | |
---|
197 | jsonArray*.toString() |
---|
198 | |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Retrieves module measurement data through a rest call to the module |
---|
203 | * |
---|
204 | * @param consumer the url of the module |
---|
205 | * @param path path of the rest call to the module |
---|
206 | * @return |
---|
207 | */ |
---|
208 | def requestModuleMeasurements(assay, fields) { |
---|
209 | |
---|
210 | def moduleUrl = assay.module.url |
---|
211 | |
---|
212 | def tokenString = '' |
---|
213 | |
---|
214 | fields.each{ |
---|
215 | tokenString+="&measurementToken=${it.name.encodeAsURL()}" |
---|
216 | } |
---|
217 | |
---|
218 | def path = moduleUrl + "/rest/getMeasurementData/query?assayToken=$assay.assayUUID" + tokenString |
---|
219 | |
---|
220 | def (sampleTokens, measurementTokens, moduleData) = moduleCommunicationService.callModuleRestMethodJSON(moduleUrl, path) |
---|
221 | |
---|
222 | if (!sampleTokens?.size()) return [] |
---|
223 | |
---|
224 | def lastDataIndex = moduleData.size() - 1 |
---|
225 | def stepSize = sampleTokens.size() + 1 |
---|
226 | |
---|
227 | // Convert the three different maps into a map like: |
---|
228 | // |
---|
229 | // [ "measurement 1": [ value1, value2, value3 ], |
---|
230 | // "measurement 2": [ value4, value5, value6 ] ] |
---|
231 | // |
---|
232 | def map = [:] |
---|
233 | def numSamples = sampleTokens.size(); |
---|
234 | def idx = 0; |
---|
235 | |
---|
236 | // Loop through all measurementtokens, and get the right slice from the measurement list |
---|
237 | measurementTokens.each { measurementToken -> |
---|
238 | def startIndex = idx++ * numSamples; |
---|
239 | def stopIndex = startIndex + numSamples - 1; |
---|
240 | map[ measurementToken.toString() ] = moduleData[ startIndex..stopIndex ].collect { it.toString() } |
---|
241 | } |
---|
242 | |
---|
243 | return map; |
---|
244 | } |
---|
245 | |
---|
246 | /** |
---|
247 | * Converts column |
---|
248 | * @param columnData multidimensional map containing column data. |
---|
249 | * On the top level, the data must be grouped by category. Each key is the |
---|
250 | * category title and the values are maps representing the columns. Each |
---|
251 | * column also has a title (its key) and a list of values. Columns must be |
---|
252 | * equally sized. |
---|
253 | * |
---|
254 | * For example, consider the following map: |
---|
255 | * [Category1: |
---|
256 | * [Column1: [1,2,3], Column2: [4,5,6]], |
---|
257 | * Category2: |
---|
258 | * [Column3: [7,8,9], Column4: [10,11,12], Column5: [13,14,15]]] |
---|
259 | * |
---|
260 | * which will be written as: |
---|
261 | * |
---|
262 | * | Category1 | | Category2 | | | |
---|
263 | * | Column1 | Column2 | Column3 | Column4 | Column5 | |
---|
264 | * | 1 | 4 | 7 | 10 | 13 | |
---|
265 | * | 2 | 5 | 8 | 11 | 14 | |
---|
266 | * | 3 | 6 | 9 | 12 | 15 | |
---|
267 | * |
---|
268 | * @return row wise data |
---|
269 | */ |
---|
270 | def convertColumnToRowStructure(columnData) { |
---|
271 | |
---|
272 | // check if all columns have the dimensionality 2 |
---|
273 | if (columnData.every { it.value.every { it.value instanceof ArrayList } }) { |
---|
274 | |
---|
275 | def headers = [[],[]] |
---|
276 | |
---|
277 | columnData.each { category -> |
---|
278 | |
---|
279 | if (category.value.size()) { |
---|
280 | |
---|
281 | // put category keys into first row separated by null values |
---|
282 | // wherever there are > 1 columns per category |
---|
283 | headers[0] += [category.key] + [null] * (category.value.size() - 1) |
---|
284 | |
---|
285 | // put non-category column headers into 2nd row |
---|
286 | headers[1] += category.value.collect{it.key} |
---|
287 | |
---|
288 | } |
---|
289 | |
---|
290 | } |
---|
291 | |
---|
292 | def d = [] |
---|
293 | |
---|
294 | // add all column wise data into 'd' |
---|
295 | columnData.each { it.value.each { d << it.value } } |
---|
296 | |
---|
297 | // transpose d into row wise data and combine with header rows |
---|
298 | headers + d.transpose() |
---|
299 | } |
---|
300 | |
---|
301 | } |
---|
302 | |
---|
303 | /** |
---|
304 | * Export column wise data in Excel format to a stream. |
---|
305 | * |
---|
306 | * @param columnData Multidimensional map containing column data |
---|
307 | * @param outputStream Stream to write to |
---|
308 | * @param useOfficeOpenXML Flag to specify xlsx (standard) or xls output |
---|
309 | * @return |
---|
310 | */ |
---|
311 | def exportColumnWiseDataToExcelFile(columnData, outputStream, useOfficeOpenXML = true) { |
---|
312 | |
---|
313 | // transform data into row based structure for easy writing |
---|
314 | def rows = convertColumnToRowStructure(columnData) |
---|
315 | |
---|
316 | if (rows) { |
---|
317 | |
---|
318 | exportRowWiseDataToExcelFile(rows, outputStream, useOfficeOpenXML) |
---|
319 | |
---|
320 | } else { |
---|
321 | |
---|
322 | throw new Exception('Wrong column data format.') |
---|
323 | |
---|
324 | } |
---|
325 | |
---|
326 | } |
---|
327 | |
---|
328 | /** |
---|
329 | * Export row wise data in Excel format to a stream |
---|
330 | * |
---|
331 | * @param rowData List of lists containing for each row all cell values |
---|
332 | * @param outputStream Stream to write to |
---|
333 | * @param useOfficeOpenXML Flag to specify xlsx (standard) or xls output |
---|
334 | * @return |
---|
335 | */ |
---|
336 | def exportRowWiseDataToExcelFile(rowData, outputStream, useOfficeOpenXML = true) { |
---|
337 | |
---|
338 | Workbook wb = useOfficeOpenXML ? new XSSFWorkbook() : new HSSFWorkbook() |
---|
339 | Sheet sheet = wb.createSheet() |
---|
340 | |
---|
341 | // create all rows |
---|
342 | rowData.size().times { sheet.createRow it } |
---|
343 | |
---|
344 | sheet.eachWithIndex { Row row, ri -> |
---|
345 | |
---|
346 | // create appropriate number of cells for this row |
---|
347 | rowData[ri].size().times { row.createCell it } |
---|
348 | |
---|
349 | row.eachWithIndex { Cell cell, ci -> |
---|
350 | |
---|
351 | // Numbers and values of type boolean, String, and Date can be |
---|
352 | // written as is, other types need converting to String |
---|
353 | def value = rowData[ri][ci] |
---|
354 | |
---|
355 | value = (value instanceof Number | value?.class in [boolean.class, String.class, Date.class]) ? value : value?.toString() |
---|
356 | |
---|
357 | // write the value (or an empty String if null) to the cell |
---|
358 | cell.setCellValue(value ?: '') |
---|
359 | |
---|
360 | } |
---|
361 | |
---|
362 | } |
---|
363 | |
---|
364 | wb.write(outputStream) |
---|
365 | outputStream.close() |
---|
366 | |
---|
367 | } |
---|
368 | |
---|
369 | } |
---|